
EBAMRGodunov

P. Colella
D. T. Graves
T. J. Ligocki

B. Van Straalen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

August 5, 2003

Contents

1 Introduction 2

2 Notation 2

3 Equations of Motion 3

4 Approximations to ∇ · F . 4

5 Flux Estimation 5

5.1 Flux Estimation in Two Dimensions . 5
5.2 Flux Estimation in Three Dimensions 8
5.3 Modificiations for R-Z Computations 12

5.3.1 Equations of Motion . 12
5.3.2 Flux Divergence Approximations 13
5.3.3 Primitive Variable Form of the Equations 14
5.3.4 Flux Registers . 14

5.4 Artifical Viscosity . 16

6 Slope Calculation 17

1

7 Computing fluxes at the irregular boundary 18

8 Results 19

1 Introduction

This document describes our numerical method for integrating systems of conservation
laws (e.g., the Euler equations of gas dynamics) on an AMR grid hierarchy with embedded
boundaries. We use an unsplit, second-order Godunov method, extending the algorithms
developed by Colella [Col90] and Saltzman [Sal94].

2 Notation

All these operations take place in a very similar context to that presented in [CGL+00].
For non-embedded boundary notation, refer to that document.
The standard (i, j, k) is not sufficient here to denote a computational cell as there can

be multiple VoFs per cell. We define v to be the notation for a VoF and f to be a face.
The function ind(v) produces the cell which the VoF lives in. We define v+(f) to be
the VoF on the high side of face f ; v−(f) is the VoF on the low side of face f ; f+

d (v)
is the set of faces on the high side of VoF v; f−d (v) is the set of faces on the low side
of VoF v, where d ∈ {x, y, z} is a coordinate direction (the number of directions is D).
Also, we compose these operators to represent the set of VoFs directly connected to a
given VoF: v+

d (v) = v+(f+
d (v)) and v−d (v) = v−(f−d (v)). The << operator shifts data

in the direction of the right hand argument. The shift operator can yield multiple VoFs.
In this case, the shift operator includes averaging the values at the shifted-to VoFs.
We follow the same approach in the EB case in defining multilevel data and operators

as we did for ordinary AMR. Given an AMR mesh hierarchy {Ωl}lmax
l=0 , we define the valid

VoFs on level l to be
V l
valid = ind−1(Ωl

valid) (1)

and composite cell-centered data

ϕcomp = {ϕl,valid}lmax
l=0 , ϕl,valid : V l

valid → Rm (2)

For face-centered data,

F l,d
valid = ind−1(Ωl,ed

valid)

~F l,valid = (F l,valid
0 , . . . , F

l,valid
D−1)

F
l,valid
d : F l,d

valid → Rm

(3)

For computations at cell centers the notation

CC = A | B | C

2

means that the 3-point formula A is used for CC if all cell centered values it uses are
available, the 2-point formula B is used if current cell borders the high side of the physical
domain (i.e., no high side value), and the 2-point formula C is used if current cell borders
the low side of the physical domain (i.e., no low side value). A value is “available” if its
VoF is not covered and is within the domain of computation. For computations at face
centers the analogous notation

FC = A | B | C

means that the 2-point formula A is used for FC if all cell centered values it uses are
available, the 1-point formula B is used if current face coincides with the high side of the
physical domain (i.e., no high side value), and the 1-point formula C is used if current
face coincided with the low side of the physical domain (i.e., no low side value).

3 Equations of Motion

We are solving a hyperbolic system of equations of the form

∂U

∂t
+

D−1∑

d=0

∂F d

∂xd
= S (4)

For 3D polytropic gas dynamics,

U =(ρ, ρux, ρuy, ρuz, ρE)T

F x =
(
ρux, ρu

2
x, ρuxuy, ρuxuz, ρuxE + uxp

)T

F y =
(
ρuy, ρuxuy, ρu

2
y, ρuyuz, ρuyE + uyp

)T

F z =
(
ρuz, ρuxuz, ρuzuy, ρu

2
z, ρuzE + uzp

)T

E =
γp

(γ − 1)ρ
+
|~u|2

2

(5)

We are given boundary conditions on faces at the boundary of the domain and on the em-
bedded boundary. We also assume there may be a change of variablesW = W (U) (W ≡
“primitive variables”) that can be applied to simplify the calculation of the characteristic
structure of the equations. This leads to a similar system of equations in W .

∂W

∂t
+

D−1∑

d=0

Ad(W)
∂W d

∂xd
= S ′

Ad = ∇UW · ∇UF
d · ∇WU

S ′ = ∇UW · S

(6)

For 3D polytropic gas dynamics,

W = (ρ, ux, uy, uz, p)
T

3

Ax =

ux ρ 0 0 0
0 ux 0 0 1

ρ

0 0 ux 0 0
0 0 0 ux 0
0 ρc2 0 0 ux

Ay =

uy 0 ρ 0 0
0 uy 0 0 0
0 0 uy 0 1

ρ

0 0 0 uy 0
0 0 ρc2 0 uy

Az =

uz 0 0 ρ 0
0 uz 0 0 0
0 0 uz 0 0
0 0 0 uz

1
ρ

0 0 0 ρc2 uz

4 Approximations to ∇ · F .

To obtain a second-order approximation of the flux divergence in conservative form, first
we must interpolate the flux to the face centroid. In two dimensions, this interpolation
takes the form

F̃
n+ 1

2
f = F

n+ 1
2

f + |x̄|(F
n+ 1

2

f<<sign(x̄)ed
− F

n+ 1
2

f) (7)

where x̄ is the centroid in the direction d perpendicular to the face normal. In three dimen-
sions, define (x̄, ȳ) to be the coordinates of the centroid in the plane (d1, d2) perpendicular
to the face normal.

F̃
n+ 1

2
f =F

n+ 1
2

f (1− x̄ȳ + |x̄ȳ|)+ (8)

F
n+ 1

2

f<<sign(x̄)ed
1 (|x̄| − |x̄ȳ|)+ (9)

F
n+ 1

2

f<<sign(x̄)ed
2 (|ȳ| − |x̄ȳ|)+ (10)

F
n+ 1

2

f<<sign(x̄)ed
1
<<sign(x̄)ed

2 (|x̄ȳ|) (11)

Centroids in any dimension are normalized by ∆x and centered at the cell center. This
interpolation is only done if the shifts that are used in the interpolation are uniquely-defined
and single-valued.
We then define the conservative divergence approximation.

∇ · ~F ≡ (D · ~F)c =
1

kvh
((

D−1∑

d=0

∑

±=+,−

∑

f∈Fd,±
v

±αf F̃
n+ 1

2
f) + αB

v F
B,n+ 1

2
v) (12)

4

The non-conservative divergence approximation is defined below.

∇ · ~F = (D · ~F)NC =
1

h

∑

±=+,−

D−1∑

d=0

±F̄
n+ 1

2
v,±,d (13)

F̄
n+ 1

2
v,±,d =

1

N(Fd,±
v)

∑
f∈Fd,±

v
F

n+ 1
2

f if N(Fd,±
v) > 0

F
covered,n+ 1

2
v,±,d otherwise

(14)

The preliminary update update of the solution of the solution takes the form:

Un−1
v = Un

v −∆t((1− kv)(D · ~F)NC
v + kv(D · ~F)cv) (15)

δM = −∆tkv(1− kv)((D · ~F)cv − (D · ~F)NC
v) (16)

δM is the total mass increment that has been unaccounted for in the preliminary update.
See the EBAMRTools document for how this mass gets redistributed in an AMR context.
On a single level, the redistribution takes the following form:

Un+1

v
′ := Un+1

v
′ + wv,v

′ , δMv (17)

v
′

∈ N (v), (18)

where N (v) is the set of VoFs that can be connected to v with a monotone path of
length ≤ 1. The weights are nonnegative, and satisfy

∑
v
′∈N (v)

κv
′wv,v

′ = 1.

5 Flux Estimation

Given Un
i and Sn

i , we want to compute a second-order accurate estimate of the fluxes:

F
n+ 1

2
f ≈ F d(x0+(i+ 1

2
ed)h, tn+ 1

2
∆t). Specifically, we want to compute the fluxes at the

center of the Cartesian grid faces corresponding to the faces of the embedded boundary
geometry. In addition, we want to compute fluxes at the centers of Cartesian grid faces
corresponding to faces adjacent to vofs, but that are completely covered. Pointwise oper-
ations are conceptually the same for both regular and irregular VoFs. In other operations
we specify both the regular and irregular VoF calculation. The transformations ∇UW

and ∇WU are functions of both space and time. We shall leave the precise centering of
these transformations vague as this will be application-dependent. In outline, the method
is given as follows.

5.1 Flux Estimation in Two Dimensions

1. Transform to primitive variables.

W n
v = W (Un

v) (19)

5

2. Compute slopes ∆dWv. This is described separately in section 6.

3. Compute the effect of the normal derivative terms and the source term on the
extrapolation in space and time from cell centers to faces. For 0 ≤ d < D,

Wv,±,d = W n
v +

1

2
(±I −

∆t

h
Ad

v)P±(∆
dWv)

Ad
v = Ad(Wv)

P±(W) =
∑

±λk>0

(lk ·W)rk

Wv,±,d = Wv,±,d +
∆t

2
∇UW · Sn

v

(20)

where λk are eigenvalues of A
d
i , and lk and rk are the corresponding left and right

eigenvectors. We then extrapolate to the covered faces. First we define the VoFs
involved.

d′ =1− d

sd =sign(nd)

vup =ind−1(ind(v) + sd
′

ed′ − sded)

vside =ind−1(ind(v) + sded)

vcorner =ind−1(ind(v) + sd
′

ed′)

(21)

Define W up,side,corner, extrapolations to the edges near the VoFs near v.

W up =Wvup,∓,d

W side =Wvside,∓,d − sd∆dW

W corner =Wvcorner,∓,d

∆dW =

{
∆dW n

vside if nd > nd′

∆dW n
vcorner otherwise

∆d′W =

{
∆d′W n

vcorner if nd > nd′

∆d′W n
vup otherwise

(22)

where the slopes are defined in section 6 If any of these vofs does not have a
monotone path to the original VoF v, we drop order the order of interpolation.

If |nd| < |nd′ |:

W full =
|nd|

|nd′ |
W corner+(1−

|nd|

|nd′ |
)W up−(

|nd|

|nd′ |
sd∆dW +sd

′

∆d′W) (23)

6

W covered
v,±,d =

W full if both exist

W up if only vup exists

W corner if only vcorner exists

W n
v if neither exists

(24)

If |nd| ≥ |nd′ |:

W full =
|nd′ |

|nd|
W corner+(1−

|nd′ |

|nd|
)W side−(

|nd′ |

|nd|
sd
′

∆d′W+sd∆dW) (25)

W covered
v,±,d =

W full if both exist

W side if only vside exists

W corner if only vcorner exists

W n
v if neither exists

(26)

4. Compute estimates of F d suitable for computing 1D flux derivatives ∂F d

∂xd
using a

Riemann solver for the interior, R, and for the boundary, RB.

F 1D
f = R(Wv−(f),+,d,Wv+(f),−,d, d)

| RB(Wv−(f),+,d, (i +
1

2
ed)h, d)

| RB(Wv+(f),−,d, (i +
1

2
ed)h, d)

d = dir(f)

(27)

5. Compute the covered fluxes F 1D,covered

F 1D, covered
v,+,d = R(Wv,+,d,W

covered
v,+,d , d)

F 1D, covered
v,−,d = R(W covered

v,−,d ,Wv,−,d, d)
(28)

6. Compute final corrections to Wi,±,d due to the final transverse derivatives. For
regular cells, this takes the following form.

W
n+ 1

2
i,±,d = nWi,±,d −

∆t

2h
∇UW · (F 1D

i+ 1
2
ed1
− F 1D

i− 1
2
ed1

) (29)

d 6= d1, 0 ≤ d, d1 < D

(30)

7

For irregular cells, we compute the transverse derivatives and use them to correct
the extrapolated values of U and obtain time-centered fluxes at centers of Cartesian
faces. In two dimensions, this takes the form

Dd,⊥Fv =
1

h
(F̄v,+,d1 − F̄v,−,d1)

F̄v,±,d′ =

1
N

v,±,d
′

∑
f∈F

v,±,d
′
F 1D

f ,±,d′
if Nv,±,d′ > 0

F 1D, covered

v,±,d′
otherwise

d 6= d1, 0 ≤ d, d1 < D

W
n+ 1

2
v,±,d =Wv,±,d −

∆t

2
∇UW (Dd,⊥Fv)

(31)

Extrapolate to covered faces with the procedure described above using W
n+ 1

2
·,∓,d to

form W
n+ 1

2
,covered

·,±,d .

7. Compute the flux estimate.

F
n+ 1

2
f = R(W

n+ 1
2

v−(f),+,d
,W

n+ 1
2

v+(f),−,d, d)

| RB(W
n+ 1

2

v−(f),+,d
, (i +

1

2
ed)h, d)

| RB(W
n+ 1

2

v+(f),−,d, (i +
1

2
ed)h, d)

F
n+ 1

2
,covered

v,−,d =R(W
n+ 1

2
,covered

v,+,d ,W
n+ 1

2
v,−,d, d)

F
n+ 1

2
,covered

v,+,d =R(W
n+ 1

2
v,+,d,W

n+ 1
2
,covered

v,+,d , d)

(32)

8. Modify the flux with artificial viscosity where the flow is compressive.

5.2 Flux Estimation in Three Dimensions

1. Transform to primitive variables.

W n
v = W (Un

v) (33)

2. Compute slopes ∆dWv. This is described separately in section 6.

3. Compute the effect of the normal derivative terms and the source term on the

8

extrapolation in space and time from cell centers to faces. For 0 ≤ d < D,

Wv,±,d = W n
v +

1

2
(±I −

∆t

h
Ad

v)P±(∆
dWv)

Ad
v = Ad(Wv)

P±(W) =
∑

±λk>0

(lk ·W)rk

Wv,±,d = Wv,±,d +
∆t

2
∇UW · Sn

v

(34)

where λk are eigenvalues of A
d
i , and lk and rk are the corresponding left and right

eigenvectors.

We then extrapolate to the covered faces. Define the direction of the face normal to
be df and d1, d2 to be the directions tangential to the face. The procedure develops
as follows

• We define the associated vofs.

• We form a 2x2 grid of values along a plane h away from the covered face and
bilinearly interpolate to the point where the normal intersects the plane.

• We use the slopes of the solution to extrapolate along the normal to get a
second-order approximation of the solution at the covered face.

Which plane is selected is determined by the direction of the normal. If any of these
VoFs does not have a monotone path to the original VoF v, we drop order the order
of interpolation.

If |nf | ≥ |nd1 | and |ndf | ≥ |nd2 |:

v00 =ind−1(ind(v) + sdfedf)

v10 =ind−1(ind(v) + sd1ed1)

v01 =ind−1(ind(v) + sd2ed2)

v11 =ind−1(ind(v) + sd1ed1 + sd2ed2)

W 00 = Wv00,∓,df − sdf∆dfWv00

W 10 = Wv10,∓,df

W 01 = Wv01,∓,df

W 11 = Wv11,∓,df

(35)

We form a bilinear function W (xd1 , xd2) in the plane formed by the four faces at

9

which the values live:

W (xd1 , xd2) = Axd1 +Bxd2 + Cxd1xd2 +D

A =sd1(W 10 −W 00)

B =sd2(W 01 −W 00)

C =sd1sd2(W 11 −W 00)− (W 10 −W 00)− (W 01 −W 00)

D =W 00

(36)

We then extrapolate to the covered face from the point on the plane where the
normal intersects

W full = W (sd1
|nd1 |

|ndf |
, sd2

|nd2 |

|ndf |
)−∆dfWv00 − sd1

|nd1 |

|ndf |
∆d1Wv10 − sd2

|nd2 |

|ndf |
∆d2Wv01

(37)
Otherwise (assume |nd1 | ≥ |ndf | and |nd1 | ≥ |nd2 |):

v00 =ind−1(ind(v) + sd1ed1)

v10 =ind−1(ind(v) + sd1ed1)− sdfedf

v01 =ind−1(ind(v) + sd1ed1) + sd2ed2

v11 =ind−1(ind(v) + sd1ed1 − sdfedf + sd2ed2

W 00 = Wv00,∓,df

W 10 = Wv10,∓,df

W 01 = Wv01,∓,df

W 11 = Wv11,∓,df

(38)

We form a bilinear function W (xd1 , xd2) in the plane formed by the four faces at
which the values live. This is shown in equation 36. We then extrapolate to the
covered face from the point on the plane where the normal intersects

W full = W (sdf
|ndf |

|nd1 |
, sd2

|nd2 |

|nd1 |
)−∆d1Wv00 − sdf

|ndf |

|nd1 |
∆dfWv10 − sd2

|nd2 |

|nd1 |
∆d2Wv01

(39)
In either case,

W covered
v,±,d =

{
W full if all four VoFs exist

W n
v otherwise

(40)

4. Compute estimates of F d suitable for computing 1D flux derivatives ∂F d

∂xd
using a

10

Riemann solver for the interior, R, and for the boundary, RB.

F 1D
f = R(Wv−(f),+,d,Wv+(f),−,d, d)

| RB(Wv−(f),+,d, (i +
1

2
ed)h, d)

| RB(Wv+(f),−,d, (i +
1

2
ed)h, d)

d = dir(f)

(41)

5. Compute the covered fluxes F 1D,covered

F 1D, covered
v,+,d = R(Wv,+,d,W

covered
v,+,d , d)

F 1D, covered
v,−,d = R(W covered

v,−,d ,Wv,−,d, d)
(42)

6. Compute corrections to Ui,±,d corresponding to one set of transverse derivatives
appropriate to obtain (1, 1, 1) diagonal coupling. This step is only meaningful in
three dimensions. We compute 1D flux differences, and use them to compute
Uv,±,d1,d2 , the d1-edge-centered state partially updated by the effect of derivatives
in the d1, d2 directions.

D1D
d F 1D

v =
1

h
(F̄ 1D

v,+,d − F̄ 1D
v,−,d)

F̄v,±,d =

1
N±,d

(
∑

f∈Fv,±,d

F 1D
f) if Nv,±,d > 0

F 1D, covered
v,±,d otherwise

(43)

Wv,±,d1,d2 = Wv,±,d1 −
∆t

3
∇UW (D1D

d2
F 1D)v (44)

We then extrapolate to covered faces with the procedure described above using
W·,±,d1,d2 to form W

covered,d
·,±,d1,d2

and compute an estimate to the fluxes:

Ff ,d1,d2 = R(Wv−(f),+,d1,d2 ,Wv+(f),−,d1,d2 , d1)

| RB(Wv−(f),+,d1,d2 , (i +
1

2
ed)h, d1)

| RB(Wv+(f),−,d1,d2 , (i +
1

2
ed)h, d1)

d =dir(f)

F covered
v,−,d1,d2

=R(W covered
v,−,d1,d2,Wv,−,d1,d2 , d1)

F covered
v,+,d1,d2

=R(Wv,+,d1,d2,W
covered
v,+,d1,d2

, d1)

(45)

11

7. Compute final corrections to Wi,±,d due to the final transverse derivatives. We
compute the 2D transverse derivatives and use them to correct the extrapolated
values of U and obtain time-centered fluxes at centers of Cartesian faces. In three
dimensions, this takes the form:

Dd,⊥Fv =
1

h
(F̄v,+,d1,d2 − F̄v,−,d1,d2 + F̄v,+,d2,d1 − F̄v,−,d2,d1)

F̄v,±,d′ ,d′′ =

1
N

v,±,d
′

∑
f∈F

v,±,d
′
Ff ,±,d′ ,d′′ if Nv,±,d′ > 0

F covered

v,±,d′ ,d′′
otherwise

d 6= d1 6= d2 0 ≤ d, d1, d2 < D

W
n+ 1

2
v,±,d =Wv,±,d −

∆t

2
∇UW (Dd,⊥Fv)

(46)

We then extrapolate to covered faces with the procedure described above using

W
n+ 1

2
·,±,d to form W

n+ 1
2
,covered,d

·,±,d .

8. Compute the flux estimate.

F
n+ 1

2
f = R(W

n+ 1
2

v−(f),+,d
,W

n+ 1
2

v+(f),−,d, d)

| RB(W
n+ 1

2

v−(f),+,d
, (i +

1

2
ed)h, d)

| RB(W
n+ 1

2

v+(f),−,d, (i +
1

2
ed)h, d)

F
n+ 1

2
,covered

v,−,d =R(W
n+ 1

2
,covered

v,+,d ,W
n+ 1

2
v,−,d, d)

F
n+ 1

2
,covered

v,+,d =R(W
n+ 1

2
v,+,d,W

n+ 1
2
,covered

v,+,d , d)

(47)

9. Modify the flux with artificial viscosity where the flow is compressive.

5.3 Modificiations for R-Z Computations

For R-Z calculations, we make some adjustments to the algorithm. Specifically, we sep-
arate the radial pressure force as a separate flux. This makes free-stream preservation in
the radial direction easier to achieve. For this section, we will confine ourselves to the
compressible Euler equations.

5.3.1 Equations of Motion

The compressible Euler equations in R-Z coordinates are given by

∂U

∂t
+

1

r

∂(rF r)

∂r
+

1

r

∂(rF z)

∂z
+

∂H

∂r
+

∂H

∂z
= 0 (48)

12

where

U =(ρ, ρur, ρuz, ρE)T

F r =(ρur, ρu
2
r, ρuruz, ρur(E + p))T

F z =(ρuz, ρuruz, ρu
2
z, ρuz(E + p))T

H =(0, p, p, 0)T

(49)

5.3.2 Flux Divergence Approximations

In section 4, we describe our solution update strategy and this remains largely unchanged.
Our update still takes the form of equation 16 and redistribution still takes the form of
equation 18. The definitions of the divergence approximations do change, however. The
volume of a full cell ∆Vj is given by

∆Vj = (j +
1

2
)h3 (50)

where (i, j) = ind−1(v). Define κvolv to be the real volume of the cell that the VoF
occupies.

κvolv =
1

∆V

∫

∆v

rdrdz =
1

∆V

∫

∂∆v

r2

2
nrdl (51)

κvolv =
h

2∆V
((αr2)f(v,+,r) − (αr2)f(v,−,r) − αB r̄

2
δvn

r) (52)

The conservative divergence of the flux in RZ is given by

(D · ~F)cv =
h

∆V κvolv

((rF̄ rα)f(v,+,r) − (rF̄ rα)f(v,−,r)

+(r̄F̄ zα)f(v,+,z) − (r̄F̄ zα)f(v,−,z))

(
∂H

∂r

)c

=
1

κvh2

∫
∂H

∂r
drdz =

1

κvh2

∫
Hnrdl

(
∂H

∂z

)c

=
1

κvh2

∫
∂H

∂z
drdz =

1

κvh2

∫
Hnzdl

We always deal with these divergences in a form multiplied by the volume fraction κ.

κv(D · ~F)cv =
hκv

∆V κvolv

((rF̄ rα)f(v,+,r) − (rF̄ rα)f(v,−,r)

+(r̄F̄ zα)f(v,+,z) − (r̄F̄ zα)f(v,−,z))

κv

(
∂H

∂r

)c

=
1

h2

∫
Hnrdl =

1

h
((Hα)f(v,+,r) − (Hα)f(v,−,r))

κv

(
∂H

∂z

)c

=
1

h2

∫
Hnzdl =

1

h
((Hα)f(v,+,z) − (Hα)f(v,−,z))

13

where F̄ has been interpolated to face centroids where α denotes the ordinary area frac-
tion. The nonconservative divergence of the flux in RZ is given by

(D · ~F)ncv =
1

hrv

((rF r)f(v,+,r) − (rF r)f(v,−,r))

+
1

h
(F z

f(v,+,z) − F z
f(v,−,z))

(
∂H

∂r

)nc

=
1

h
(Hf(v,+,r) −Hf(v,−,r))

(
∂H

∂z

)nc

=
1

h
(Hf(v,+,z) −Hf(v,−,z))

5.3.3 Primitive Variable Form of the Equations

In the predictor step, we use the nonconservative form of the equations of motion. See
Courant and Friedrichs [CF48] for derivations.

∂W

∂t
+ Ar ∂W

∂r
+ Az ∂W

∂z
= S (53)

where

W =(ρ, ur, uz, p)
T

S =
(
−ρ

ur

r
, 0, 0,−ρc2

ur

r

)T

Ar =

ur ρ 0 0
0 ur 0 1

ρ

0 0 ur 0
0 ρc2 0 ur

Ar =

uz ρ 0 0
0 uz 0 0
0 0 uz

1
ρ

0 0 ρc2 uz

5.3.4 Flux Registers

Refluxing is the balancing the fluxes at coarse-fine interfaces so the coarse side of the
interface is using the same flux as the integral of the fine fluxes over the same area. In
this way, we maintain strong mass conservation at coarse-fine interfaces. As shown in
equation, 5.3.2, the conservative divergence in cylindrical coordinates is has a differenct
form than in Cartesian coordinates. It is therefore necessary to describe the refluxing
operation specifically for cylindrical coordinates.

14

Let ~F comp = {~F f , ~F c,valid} be a two-level composite vector field. We want to define

a composite divergence Dcomp(~F f , ~F c,valid)v, for v ∈ V c
valid. We do this by extending

F c,valid to the faces adjacent to v ∈ V c
valid, but are covered by F

f
valid.

< F f
z >fc

=

(
κvc

κvolvc
∆Vvc

)(
h2

(nref)(D−1)

) ∑

f∈C−1
nref (fc)

(r̄α)f (F̄
z + H̄)f

< F f
r >fc

=

(
κvc

κvolvc
∆Vvc

)(
h2

(nref)(D−1)

) ∑

f∈C−1
nref

(fc)

(rα)f (F
r +H)f

F c
r,fc

=

(
κvc

κvolvc
∆Vvc

)
(h2(rα)fc

)(F r +H)fc

F c
z,fc

=

(
κvc

κvolvc
∆Vvc

)
(h2(r̄α)fc

)(F̄ z + H̄)fc

f c ∈ ind
−1(i +

1

2
ed), i +

1

2
ed ∈ ζ

f
d,+ ∪ ζ

f
d,−

ζ
f
d,± = {i±

1

2
ed : i± ed ∈ Ωc

valid, i ∈ Cnref (Ω
f)}

The VoF vc is the coarse volume that is adjacent to the coarse-fine interface and rvc
is

the radius of its cell center. Then we can define (D · ~F)v,v ∈ V
c
valid, using the expression

above, with F̃f =< F
f
d > on faces covered by F f . We can express the composite

divergence in terms of a level divergence, plus a correction. We define a flux register δ ~F f ,
associated with the fine level

δ ~F f = (δF f
0,...δF

f
D−1)

δF
f
d : ind

−1(ζfd,+ ∪ ζ
f
d,−)→ Rm

If ~F c is any coarse level vector field that extends ~F c,valid, i.e. F c
d = F

c,valid
d on F c,d

valid then
for v ∈ Vc

valid

Dcomp(~F f , ~F c,valid)v = (D~F c)v +DR(δ ~F
c)v (54)

Here δ ~F f is a flux register, set to be

δF
f
d =< F

f
d > −F c

d on ind
−1(ζcd,+ ∪ ζcd,−) (55)

DR is the reflux divergence operator. For valid coarse vofs adjacent to Ωf it is given by

κv(DRδ ~F
f)v =

D−1∑

d=0

(
∑

f :v=v+(f)

δF
f
d,f −

∑

f :v=v−(f)

δF
f
d,f) (56)

For the remaining vofs in Vf
valid,

(DRδ ~F
f) ≡ 0 (57)

15

We then add the reflux divergence to adjust the coarse solution U c to preserve conserva-
tion.

U c
v += κv(DR(δF))v (58)

5.4 Artifical Viscosity

The artificial viscosity coefficient is K0, the velocity is ~u and d = dir(f).

(D~u)f = (udv+(f) − udv−(f)) +
∑

d
′ 6=d

1

2
(∆d

′

ud
′

v+(f) +∆d
′

ud
′

v−(f))

Kf = K0 max(−(D~u)f , 0)

F
n+ 1

2
f = F

n+ 1
2

f −Kf (U
n
v+(f) − Un

v−(f))

F covered
v,±,d = F covered

v,±,d −Kf (U
n
v+(f) − Un

v−(f))

We modify the covered face with the same divergence used in the adjacent uncovered
face.

F covered
v,±,d =F covered

v,±,d −Kf (U
n
v+(f) − Un

v−(f))

f =f(v,∓, d)

This has the effect of negating the effect of artificial viscosity on the non-conservative
divergence of the flux at irregular cells. We describe later that the solid wall boundary
condition at the embedded boundary is also modified with artificial viscosity.

16

6 Slope Calculation

We will use the 4th order slope calculation in Colella and Glaz [CG85] combined with
characteristic limiting.

∆dWv = ζv ∆̃dWv

∆̃dWv = ∆vL(∆BWv,∆
LWv,∆

RWv) | ∆
d
2Wv | ∆

d
2Wv

∆d
2Wv = ∆vL(∆CWv,∆

LWv,∆
RWv) | ∆

V LLWv | ∆
V LRWv

∆BWv =
2

3
((W −

1

4
∆d

2W)<<ed)v − ((W +
1

4
∆d

2W)<<−ed)v)

∆CWv =
1

2
((W n<<ed)v − (W n<<−ed)v)

∆LWv = W n
v − (W n<<−ed)v

∆RWv = (W n<<ed)v −W n
v

∆3LWv =
1

2
(3W n

v − 4(W n<<−ed)v + (W n<<−2ed)v)

∆3RWv =
1

2
(−3W n

v + 4(W n<<ed)v − (W n<<2ed)v)

∆V LLWv =

{
min(∆3LWv,∆

L
v) if ∆3LWv ·∆

LWv > 0

0 otherwise

∆V LRWv =

{
min(∆3RWv,∆

R
v) if ∆3RWv ·∆

RWv > 0

0 otherwise

At domain boundaries, ∆LWv and ∆RWv may be overwritten by the application. There
are two versions of the van Leer limiter ∆vL(δWC , δWL, δWR) that are commonly used.
One is to apply a limiter to the differences in characteristic variables.

1. Compute expansion of one-sided and centered differences in characteristic variables.

αk
L = lk · δWL (59)

αk
R = lk · δWR (60)

αk
C = lk · δW (61)

2. Apply van Leer limiter

αk =

{
min(2 |αk

L |, 2 |α
k
R |, |α

k
C |) if αk

L · α
k
R > 0

0 otherwise
(62)

3. ∆vL =
∑

k α
krk

17

Here, lk = lk(W n
i) and r

k = rk(W n
i).

For a variety of problems, it suffices to apply the van Leer limiter componentwise to
the differences. Formally, this can be obtain from the more general case above by taking
the matrices of left and right eigenvectors to be the identity.
Finally, we give the algorithm for computing the flattening coefficient ζi. We assume

that there is a quantity corresponding to the pressure in gas dynamics (denoted here
as p) which can act as a steepness indicator, and a quantity corresponding to the bulk
modulus (denoted here asK, given as γp in a gas), that can be used to non-dimensionalize
differences in p.

ζv =

{
min
0≤d<D

ζdv if
∑D−1

d=0 ∆d
1u

d
v < 0

1 otherwise
(63)

ζdv = min3(ζ̃
d, d)v

ζ̃dv = η(∆d
1pv, ∆

d
2pv, min3(K, d)v)

∆d
1pv = ∆Cpv | ∆

Lpv | ∆
Rpv

∆d
2pv = (∆d

1p<<ed)v + (∆d
1p<<−ed)v | 2∆

d
1pv | 2∆

d
1pv

The functions min3 and ζ are given below.

min3(q, d)v = min((q<<ed)v, qv, (q<<−ed)v) | minqv, (q<<−ed)v) | min(q<<ed)v, qv)

ζ(δp1, δp2, p0) =

0 if |δp1|
p0

> d and |δp1|
|δp2|

> r1

1−
|δp1|
|δp2|

−r0

r1−r0
if |δp1|

p0
> d and r1 ≥

|δp1|
|δp2|

> r0

1 otherwise

r0 = 0.75, r1 = 0.85, d = 0.33

(64)

Note that min3 is not the minimim over all available VoFs but involves the minimum of
shifted VoFs which includes an averaging operation.

7 Computing fluxes at the irregular boundary

The flux at the embedded boundary is centered at the centroid of the boundary x̄. We
extrapolate the primitive solution in space from the cell center. We then transform to the
conservative solution and extrapolate in time using the stable, non-conservative estimate

18

of the flux divergence described in equation 14.

Wv,B = W n
v +

D−1∑

d=0

(x̄d∆
dW n

v) (65)

U
n+ 1

2
v,B = U(Wv,B)−

∆t

2
(D · ~F)NC (66)

F
n+ 1

2
v,B = RB(U

n+ 1
2

v,B ,nB
v) (67)

If we are using solid-wall boundary condtions at the irregular boundary, we calculate an
approximation of the divergence of the velocity at the irregular cell D(~u)v and use it to
modify the flux to be consistent with artificial viscosity. The d-direction momentum flux
at the irregular boundary is given by −prnd where pr is the pressure to emerge from the
Riemann solution in equation 67. For artificial viscosity, we modify this flux as follows.

(D~u)v =
D−1∑

d
′
=0

∆d
′

ud
′

v

pr = pr − 2K0 max(−(D~u)v, 0)~u · n̂

8 Results

We run the Modiano problem for one time step to compute the truncation error of the
operator. The error at a given level of refinement Eh is approximated by

Etrunc =
Uh(t)− U e(t)

t
(68)

where Uh(t) is the discrete solution and U e(t) is the exact solution at time t = ∆t. We
run the Modiano problem for a fixed time to compute the solution error of the operator.
The error at a given level of refinement Eh is approximated by

Esoln = Uh(t)− U e(t) (69)

where Uh(t) is the discrete solution and U e(t) is the exact solution at time t. The order
of convergence p is given by

p =
log(|E

2h|
|Eh|

)

log(2)
(70)

References

[CF48] R. Courant and K. O. Friedrichs. Supersonic Flow and Shock Waves. NYU,
New York, NY, 1948.

19

Variable Coarse Error Fine Error Order

mass-density 3.127796e-05 1.669137e-05 9.060445e-01
x-momentum 3.292329e-05 1.675957e-05 9.741235e-01
y-momentum 6.766401e-05 3.141857e-05 1.106771e+00
energy-density 1.094807e-04 5.842373e-05 9.060502e-01

Table 1: Truncation error convergence rates using L-0 norm. hf = 1
512
and hc = 2hf ,

D = 2

Variable Coarse Error Fine Error Order

mass-density 7.358933e-08 1.616991e-08 2.186185e+00
x-momentum 7.569344e-08 2.010648e-08 1.912508e+00
y-momentum 1.764416e-07 4.648945e-08 1.924216e+00
energy-density 2.575709e-07 5.659651e-08 2.186185e+00

Table 2: Truncation error convergence rates using L-1 norm. hf = 1
512
and hc = 2hf ,

D = 2

Variable Coarse Error Fine Error Order

mass-density 4.010155e-07 1.164273e-07 1.784228e+00
x-momentum 6.057493e-07 2.402295e-07 1.334308e+00
y-momentum 1.717569e-06 5.992271e-07 1.519193e+00
energy-density 1.403616e-06 4.075112e-07 1.784237e+00

Table 3: Truncation error convergence rates using L-2 norm. hf = 1
512
and hc = 2hf ,

D = 2

Variable Coarse Error Fine Error Order

mass-density 3.769203e-07 7.212809e-08 2.385626e+00
x-momentum 3.427140e-07 7.681266e-08 2.157589e+00
y-momentum 7.501614e-07 1.692840e-07 2.147755e+00
energy-density 1.319233e-06 2.524508e-07 2.385625e+00

Table 4: Solution error convergence rates using L-0 norm. hf = 1
512
and hc = 2hf , D = 2

20

[CG85] P. Colella and H. M. Glaz. Efficient solution algorithms for the Riemann problem
for real gases. J. Comput. Phys., 59:264, 1985.

[CGL+00] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B.
Serafini, and B. Van Straalen. Chombo Software Package for AMR Applications
- Design Document. unpublished, 2000.

[Col90] Phillip Colella. Multidimensional upwind methods for hyperbolic conservation
laws. J. Comput. Phys., 87:171–200, 1990.

[Sal94] Jeff Saltzman. An unsplit 3d upwind method for hyperbolic conservation laws.
J. Comput. Phys., 115:153–168, 1994.

21

Variable Coarse Error Fine Error Order

mass-density 1.103779e-09 1.855826e-10 2.572317e+00
x-momentum 1.125935e-09 2.356203e-10 2.256588e+00
y-momentum 1.617258e-09 2.371548e-10 2.769649e+00
energy-density 3.863314e-09 6.495531e-10 2.572320e+00

Table 5: Solution error convergence rates using L-1 norm. hf = 1
512
and hc = 2hf , D = 2

Variable Coarse Error Fine Error Order

mass-density 5.553216e-09 1.114919e-09 2.316385e+00
x-momentum 6.038922e-09 1.251264e-09 2.270905e+00
y-momentum 9.515687e-09 2.244841e-09 2.083695e+00
energy-density 1.943688e-08 3.902358e-09 2.316379e+00

Table 6: Solution error convergence rates using L-2 norm. hf = 1
512
and hc = 2hf , D = 2

22

